5,980 research outputs found

    Non-Markovian dynamics with fermions

    Full text link
    Employing the quadratic fermionic Hamiltonians for the collective and internal subsystems with a linear coupling, we studied the role of fermionic statistics on the dynamics of the collective motion. The transport coefficients are discussed as well as the associated fluctuation-dissipation relation. Due to different nature of the particles, the path to equilibrium is slightly affected. However, in the weak coupling regime, the time-scale for approaching equilibrium is found to be globally unchanged. The Pauli-blocking effect can modify the usual picture in open quantum system. In some limits, contrary to boson, this effect can strongly hinder the influence of the bath by blocking the interacting channels.Comment: 13 pages, 6 figures. Submitted to PR

    Neutron pair transfer in sub-barrier capture process

    Full text link
    The sub-barrier capture reactions following the neutron pair transfer are proposed to be used for the indirect study of neutron-neutron correlation in the surface region of nucleus. The strong effect of the dineutron-like clusters transfer stemming from the surface of magic and non-magic nuclei 18^{18}O, 48^{48}Ca, 64^{64}Ni, 94,96^{94,96}Mo, 100,102,104^{100,102,104}Ru, 104,106,108^{104,106,108}Pd, and 112,114,116,118,120,124,132^{112,114,116,118,120,124,132}Sn is demonstrated. The dominance of two-neutron transfer channel at the vicinity of the Coulomb barrier is further supported by time-dependent mean-field approaches.Comment: 17 pages, 7 figures, accepted in PR

    Magnetic blackbody shift of hyperfine transitions for atomic clocks

    Full text link
    We derive an expression for the magnetic blackbody shift of hyperfine transitions such as the cesium primary reference transition which defines the second. The shift is found to be a complicated function of temperature, and has a T^2 dependence only in the high-temperature limit. We also calculate the shift of ground-state p_1/2 hyperfine transitions which have been proposed as new atomic clock transitions. In this case interaction with the p_3/2 fine-structure multiplet may be the dominant effect

    Polarization of the nuclear surface in deformed nuclei

    Full text link
    The density profiles of around 750 nuclei are analyzed using the Skyrme energy density functional theory. Among them, more than 350 nuclei are found to be deformed. In addition to rather standard properties of the density, we report a non-trivial behavior of the nuclear diffuseness as the system becomes more and more deformed. Besides the geometric effects expected in rigid body, the diffuseness acquires a rather complex behavior leading to a reduction of the diffuseness along the main axis of deformation simultaneously with an increase of the diffuseness along the other axis. The possible isospin dependence of this polarization is studied. This effect, that is systematically seen in medium- and heavy-nuclei, can affect the nuclear dynamical properties. A quantitative example is given with the fusion barrier in the 40^{40}Ca+ 238^{238}U reaction.Comment: 8 pages, 13 figure

    Graphene in periodically alternating magnetic field: unusual quantization of the anomalous Hall effect

    Full text link
    We study the energy spectrum and electronic properties of graphene in a periodic magnetic field of zero average with a symmetry of triangular lattice. The periodic field leads to formation of a set of minibands separated by gaps, which can be manipulated by external field. The Berry phase, related to the motion of electrons in kk space, and the corresponding Chern numbers characterizing topology of the energy bands are calculated analytically and numerically. In this connection, we discuss the anomalous Hall effect in the insulating state, when the Fermi level is located in the minigap. The results of calculations show that in the model of gapless Dirac spectrum of graphene the anomalous Hall effect can be treated as a sum of fractional quantum numbers, related to the nonequivalent Dirac points.Comment: 6 pages, 5 figure

    Anomalous Hall Effect due to the spin chirality in the Kagom\'{e} lattice

    Full text link
    We consider a model for a two dimensional electron gas moving on a kagom\'{e} lattice and locally coupled to a chiral magnetic texture. We show that the transverse conductivity σ_xy\sigma\_{xy} does not vanish even if spin-orbit coupling is not present and it may exhibit unusual behavior. Model parameters are the chirality, the number of conduction electrons and the amplitude of the local coupling. Upon varying these parameters, a topological transition characterized by change of the band Chern numbers occur. As a consequence, σ_xy\sigma\_{xy} can be quantized, proportional to the chirality or have a non monotonic behavior upon varying these parameters.Comment: 8 pages, 7 figure

    Berry phase of magnons in textured ferromagnets

    Full text link
    We study the energy spectrum of magnons in a ferromagnet with topologically nontrivial magnetization profile. In the case of inhomogeneous magnetization corresponding to a metastable state of ferromagnet, the spin-wave equation of motion acquires a gauge potential leading to a Berry phase for the magnons propagating along a closed contour. The effect of magnetic anisotropy is crucial for the Berry phase: we show that the anisotropy suppresses its magnitude, which makes the Berry phase observable in some cases, similar to the Aharonov-Bohm effect for electrons. For example, it can be observed in the interference of spin waves propagating in mesoscopic rings. We discuss the effect of domain walls on the interference in ferromagnetic rings, and propose some experiments with a certain geometry of magnetization. We also show that the nonvanishing average topological field acts on the magnons like a uniform magnetic field on electrons. It leads to the quantization of the magnon spectrum in the topological field.Comment: 8 pages, 5 figure

    Chiral two-dimensional electron gas in a periodic magnetic field

    Full text link
    We study the energy spectrum and electronic properties of two-dimensional electron gas in a periodic magnetic field of zero average with a symmetry of triangular lattice. We demonstrate how the structure of electron energy bands can be changed with the variation of the field strength, so that we can start from nearly free electron gas and then transform it continuously to a system of essentially localized chiral electron states. We find that the electrons near some minima of the effective potential are responsible for occurrence of dissipationless persistent currents creating a lattice of current contours. The topological properties of the electron energy bands are also varied with the intensity of periodic field. We calculated the topological Chern numbers of several lower energy bands as a function of the field. The corresponding Hall conductivity is nonzero and, when the Fermi level lies in the gap, it is quantized.Comment: 10 pages;9 figures;42 reference
    corecore